nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 08, v.41 22-28
高铁隧道压缩波实验装置及AMESim参数仿真探究
基金项目(Foundation): 山西省基础研究计划资助项目(202403021221051)
邮箱(Email): 2353961603@qq.com;
DOI: 10.13774/j.cnki.kjtb.2025.08.004
摘要:

本文设计了一种利用储气罐瞬间释放高压空气产生压缩波的简易实验装置,并基于AMESim软件建立了系统仿真模型,探究了模型中元件子模型的选取以及关键参数对压缩波波形的影响规律。仿真结果表明:气动腔子模型的影响可忽略;可调孔板的Perry模型更接近真实阀门特性;孔板后端连接管道及测点两端的气动管道均采用简单波动方程以表征变截面传播特性。基于10个孔板并联的仿真模型可知:压缩波的幅值及梯度随气动腔压力、可调孔板个数及孔径和后端连接管道管径的增大而上升;压缩波的幅值、上升梯度及频率随可调孔板开启时间、后端连接管道长度和气动管道管径的增大而下降。该模型为实验装置的设计提供参数影响依据,后续需通过实验数据进行验证并优化。

Abstract:

This paper designs a simple experimental device that utilizes the instantaneous release of high-pressure air from a storage tank to generate compression waves. A system simulation model is established based on the AMESim software. This paper explores the selection of component sub-models in the model and the influence laws of key parameters on the compression wave waveform. The simulation results show that the influence of the pneumatic cavity sub-model can be ignored; The Perry model of the adjustable orifice plate is closer to the actual valve characteristics;The pneumatic pipes at the rear end of the orifice plate and at both ends of the measuring points are all represented by simple wave equations to characterize the propagation characteristics of the variable cross-section. Based on the simulation model of ten orifice plates in parallel,it can be known that the amplitude and gradient of the compression wave increase with the increase of the pneumatic cavity pressure,the number of adjustable orifice plates,the orifice diameter,and the diameter of the rear-end connecting pipe; The amplitude,gradient,and frequency of the compression wave decrease with the increase of the opening time of the adjustable orifice plate,the length of the rear-end connecting pipe,and the diameter of the pneumatic pipe. This model provides parameter influence basis for the design of the experimental device,and it needs to be verified and optimized through experimental data.

参考文献

[1]李心萍.“八纵八横”高铁网主通道建成投产约八成[N].人民日报,2024-10-02(001).

[2]巩江峰,王伟,黎旭,等.截至2024年底中国铁路隧道情况统计及2024年新开通项目隧道情况介绍[J].隧道建设(中英文),2025,45(3):636-653.

[3]刘金通,李人宪.高速铁路长隧道压缩波波前变形规律分析[J].计算力学学报,2019,36(3):364-369.

[4]梅元贵,周朝晖,许建林.高速铁路隧道空气动力学[M].北京:科学出版社,2009.

[5]徐焕祥,俞小莉,王雷,等.压缩空气发动机工作过程分析[J].农业工程学报,2016,32(S1):42-49.

[6]赵锋,王啸.基于射击噪声原理的消音器设计方法研究综述[J].兵器装备工程学报,2023,44(8):81-87.

[7]陈昌伟.高速电梯井道空气噪声分析与抑制措施[J].中国电梯,2022,33(7):7-9,28.

[8]白世杰,李世龙,宋业城,等.无膜激波管瞬时开启驱动装置[J].气体物理,2025,10(4):21-30.

[9] Ozawa S.Studies of micro-pressure wave radiated from a tunnel exit[J].Railway Technical Research Report,1979(1121):1-92.

[10] Mashimo S,Nakatsu E,Aoki T,et al.Entry compression wave generated by a high-speed train entering a tunnel[J].Transactions of The Japan Society of Mechanical Engineers Series B,1995,61(590):3720-3727.

[11]王宏林,雷波,毕海权.压缩波惯性作用对其波形演变的影响[J].西南交通大学学报,2015,50(1):118-123.

[12]余南阳,梅元贵.高速铁路隧道压力波动主要影响参数研究[J].中国铁道科学,2003,24(6):68-70.

[13]肖京平,黄志祥,陈立.高速列车空气动力学研究技术综述[J].力学与实践,2013,35(2):1-12.

[14]邱英政.高速列车交会压力波数值模拟计算与测试研究[D].北京:北京交通大学,2008.

[15] Miyachi T.Acoustic model of micro-pressure wave emission from a high-speed train tunnel[J].Journal of Sound and Vibration,2017,391:127-152.

[16] Matsuo K.Attenuation of compression waves in a highspeed railway tunnel simulator[C]//Proc.of 7th Int.Symp.on Aerodynamics and Ventilation of Vehicle Tunnels.1991:239.

[17]宋军浩,郭迪龙,杨国伟,等.高速列车隧道通过中的气动效应动模型实验研究[J].实验流体力学,2017,31(5):39-45.

[18]王涛,臧建彬,李芃.列车隧道空气动力学研究综述[J].隧道建设(中英文),2022,42(S1):7-18.

[19]刘堂红,田红旗,金学松.隧道空气动力学实车试验研究[J].空气动力学学报,2008,26(1):42-46.

[20]吴海青.AMESim在液压与气压传动课程教学中的应用研究[J].中国设备工程,2025(14):262-265.

基本信息:

DOI:10.13774/j.cnki.kjtb.2025.08.004

中图分类号:U459.1

引用信息:

[1]刘彬,郝彤彬,刘峰.高铁隧道压缩波实验装置及AMESim参数仿真探究[J].科技通报,2025,41(08):22-28.DOI:10.13774/j.cnki.kjtb.2025.08.004.

基金信息:

山西省基础研究计划资助项目(202403021221051)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文