nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo journalinfonormal searchdiv searchzone qikanlogo popupnotification paper paperNew
2025, 11, v.41 37-42
风浪流联合作用下海上风电单桩基础稳定性分析
基金项目(Foundation): 国家自然科学基金面上项目(42477144)
邮箱(Email):
DOI: 10.13774/j.cnki.kjtb.2025.11.006
摘要:

我国东南沿海频发的台风天气会引发极端风、浪、流联合荷载,因此有必要开展极端环境下海上风电桩基础水平承载性能的系统研究。本文采用荷载传递法与SACS(structural analysis of civil and marine systems)有限元模拟相结合的方法,建立了海上风电“塔筒–钢管桩”数值分析模型,研究流速、浪高和风速对桩基础挠度、剪力和弯矩的影响规律,主要结论如下:(1)桩身最大挠度、弯矩和剪力分别出现在桩顶位置、泥面以下约0.4D处和泥面以下约3.2D处;(2)流速对桩基础挠度的影响最为显著,而风速与浪高对剪力的影响更大;(3)风、浪、流联合作用下,剪力受影响最显著,其次为弯矩,挠度受影响最小。

Abstract:

Frequent typhoon events along the southeastern coast of China often induce extreme combined wind, wave,and current loads. Therefore, it is essential to conduct a systematic study on the horizontal bearing capacity of offshore wind turbine monopile foundations under such extreme environmental conditions. In this study, a numerical analysis model of an offshore wind turbine "tower–steel monopile" system was developed by integrating the load transfer theory with SACS(structural analysis of civil and marine systems) finite element simulations. The effects of current velocity,wave height, and wind speed on pile deflection, shear force, and bending moment were investigated. The main findings are as follows:(1) The maximum pile deflection,bending moment,and shear force occur at the pile top, approximately0.4D below the mudline, and approximately 3.2D below the mudline, respectively.(2) Current velocity has the most significant impact on pile deflection,while wind speed and wave height exert greater influence on shear force.(3) Under the combined action of wind, wave, and current loads, shear force is most affected, followed by bending moment, with deflection being the least affected.

参考文献

[1]徐海超,张坤,张雷,等.基于Fluent的海上风电大直径单桩腐蚀气体排放数值模拟[J].科技通报,2023,39(7):28-32,54.

[2]邓雅文,马宏旺,常雪凝.长期循环荷载对海上风电单桩基础疲劳损伤的影响[J].科技通报,2022,38(10):37-46,53.

[3]许维强,葛畅,吴永华,等.大连海域大直径单桩基础冲刷特征及其水平承载特性分析[J].科技通报,2022,38(10):74-78.

[4]任年鑫,徐世铮,马哲,等.极端台风下停机姿态对海上风力机叶片气动载荷影响[J].太阳能学报,2020,41(9):287-292.

[5]阮建,王欣怡,刘宏洲,等.基于均匀和局部腐蚀模型的海上风电单桩基础承载特性[J].中国海洋平台,2023,38(4):42-47.

[6]沈晓雷,郭健,张海涛,等.固化土加固海上风电桩基水平承载特性研究[J].水道港口,2023,44(1):118-123.

[7]赖踊卿,李炜,戚海峰,等.海上风电大直径单桩基础循环重固结效应离心机试验研究[J].岩土力学,2024,45(10):2994-3002,3012.

[8]王海宇,沈侃敏,贺瑞,等.海床加固对海上风电单桩基础的动力特性影响[J].太阳能学报,2024,45(6):607-618.

[9]袁煜晖,贺瑞,朱元张.水平循环荷载下嵌岩单桩基础受力特性试验研究[J].河海大学学报(自然科学版),2024,52(6):97-106.

[10]修衍彬,张融圣,王恒丰,等.海上风电大直径嵌岩单桩侧向承载机理分析[J].可再生能源,2024,42(10):1325-1331.

[11]孔德森,刘一,邓美旭,等.海上风电单桩基础土相互作用特性影响因素分析[J].海洋工程,2021,39(1):100-111.

[12] API. API recommended practice 2A-WSD(RP 2AWSD)twenty-first edition[S].USA:API,2000.

[13]陈晶.导管架式海上风电基础结构分析[D].天津:天津大学,2014.

[14] Zaaijer M B.Foundation modelling to assess dynamic behaviour of offshore wind turbines[J].Applied Ocean Research,2006,28(1):45-57.

基本信息:

DOI:10.13774/j.cnki.kjtb.2025.11.006

中图分类号:TU473.1;TM614

引用信息:

[1]洪华斌,牛一诺,俞涵,等.风浪流联合作用下海上风电单桩基础稳定性分析[J].科技通报,2025,41(11):37-42.DOI:10.13774/j.cnki.kjtb.2025.11.006.

基金信息:

国家自然科学基金面上项目(42477144)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文