59 | 0 | 53 |
下载次数 | 被引频次 | 阅读次数 |
概率地震需求分析(probabilistic seismic demand analysis,PSDA)理论在桥梁抗震设计中具有重要应用,地震动强度指标(intensity measure,IM)作为PSDA的核心参数,其选择直接影响结构的抗震性能评估。本文针对隔震桥梁,研究了不同类型地震动(远断层与脉冲近断层地震)下不同IM的表现。通过建立某四跨隔震连续梁桥的有限元模型,并选取96条地震记录,对比14种常见IM的效率、实用性、熟练度和充分性等方面的表现。研究结果表明,基于反应谱几何均值构建的IM(Sagm2)在评估隔震桥梁的抗震性能时具有明显优势,尤其在效率和实用性方面表现突出。此外,本文进一步探讨了反应谱类型和周期范围对IM选择的影响。通过优化周期范围,提出Sagm3作为最优IM,其周期范围为0.2T1~3T1,能够在远断层和近断层地震动作用下提供较为准确的结构响应预测。本研究为隔震桥梁的抗震设计提供了科学依据,并提出了IM选择的优化方案。
Abstract:Probabilistic seismic demand analysis(PSDA) theory has an important application in the seismic design of bridges. Ground motion intensity measure(IM) is the core parameter of PSDA,and its selection directly affects the seismic performance evaluation of structures. In this paper,the IM behavior of isolated bridges under different types of ground motion(far fault and pulse near fault earthquake) is studied. The finite element model of a four-span isolated continuous beam bridge was established,and 96 seismic records were selected to compare the efficiency,practicability,proficiency and adequacy of 14 common IM. The results show that IM(Sagm2) based on geometric mean response spectrum has obvious advantages in evaluating the seismic performance of isolated bridges, especially in terms of efficiency and practicability. In addition,the effects of reaction spectrum type and period range on IM selection were further discussed. By optimizing the period range,Sagm3 is proposed as the optimal IM with a period range of 0.2T1 to 3.0T1,which can provide more accurate prediction of structural response under the action of ground motion on far and near faults. Finally,the research provides a scientific basis for the seismic design of isolated bridges,and puts forward the optimization scheme of IM selection.
[1]韩淼,段燕玲,孙欢,等.近断层地震动特征参数对基础隔震结构地震响应的影响分析[J].土木工程学报,2013,46(6):8-13.
[2]陈笑宇,王东升,付建宇,等.近断层地震动脉冲特性研究综述[J].工程力学,2021,38(8):1-14,54.
[3] Smith M,Allen M.Journal of earthquake engineering[J].Journal of Earthquake Engineering,2018,22(1):45-63.
[4] Baker J W. Probabilistic structural response assessment using vector-valued intensity measures[J]. Earthquake Engineering&Structural Dynamics,2007,36(13):1861-1883.
[5] Chen X,Li J Z,Guan Z G.Fragility analysis of tall pier bridges subjected to near-fault pulse-like ground motions[J].Structure and Infrastructure Engineering,2020,16(8):1082-1095.
[6]叶列平,马千里,缪志伟.结构抗震分析用地震动强度指标的研究[J].地震工程与工程振动,2009,29(4):9-22.
[7]卢啸,陆新征,叶列平.超高层建筑地震动强度指标探讨[J].土木工程学报,2012,45(S1):292-296.
[8]杨参天,解琳琳,李爱群,等.适用于高层隔震结构的地震动强度指标研究[J].工程力学,2018,35(8):21-29.
[9]邢晨曦,金早,陶天友,等.面向隔震曲线梁桥抗震分析的脉冲型地震动强度指标研究[J].中国公路学报,2024,37(11):127-138.
[10]吴春利,李魁,顾正伟,等.基于能量的中小跨径桥梁地震易损性分析[J/OL].吉林大学学报(工学版):1-10[2024-12-04].https://kns.cnki.net/kcms2/article/abstract? v=ZscdH8NaPi9_668HAJrtCxrCKhJOFwkT6uzzkHe6ini8D1USzS6yR0dzu3CpJb9Bw8J7octG1TpzzHBPoZi8wlJiPK-CKXZYeneTr0ZCYeMU3o_obflqRyOhukuKFgmnI34hRRTY7wiCYQseEw02NAyco2bWFT8eGBp6R5-ukrU5CfCGNVx4xA==&uniplatform=NZKPT&language=CHS.
[11] Giovenale P,Cornell C A,Esteva L.Comparing the adequacy of alternative ground motion intensity measures for the estimation of structural responses[J].Earthquake Engineering&Structural Dynamics,2004,33(8):951-979.
[12] Padgett J E,Nielson B G,DesRoches R.Selection of optimal intensity measures in probabilistic seismic demand models of highway bridge portfolios[J].Earthquake Engineering&Structural Dynamics,2008,37(5):711-725.
[13] Shakib H,Pirizadeh M. Probabilistic seismic performance assessment of setback buildings under bidirectional excitation[J]. Journal of Structural Engineering,2014,140(2):04013061.
[14] Pang Y T,Wang X W. Cloud-IDA-MSA conversion of fragility curves for efficient and high-fidelity resilience assessment[J].Journal of Structural Engineering,2021,147(5):04021049.
[15] Pinto P,de Oliveira J,Medeiros D.Evaluation of intensity measures for pulse-like near-fault ground motions[J].Earthquake Spectra,2015,31(4):2135-2153.
[16] Chen L,Zuo R,Hu Z L,et al.Effects of important characteristics of earthquake ground motions on probabilistic seismic demand assessment of long-span cable-stayed bridges[J].Structures,2024,60:105910.
[17]王伟军,虞庐松,李子奇,等.近断层地震特性对隔震曲线连续梁桥地震响应的影响[J].地震工程学报,2022,44(1):86-92,127.
[18] Sha B,Xing C X,Xu J H,et al.A novel orthogonally separated isolation system and its seismic performance on a curved concrete bridge[J].International Journal of Structural Stability and Dynamics,2021,21(11):2150158.
[19] Bianchini M,Diotallevi P,Baker J W.Prediction of inelastic structural response using an average of spectral accelerations[C]//10th international conference on structural safety and reliability(ICOSSAR2009). Osaka,Japan&Francis,2009,1317:2164-2171.
[20] Eads L,Miranda E,Lignos D G.Average spectral acceleration as an intensity measure for collapse risk assessment[J]. Earthquake Engineering&Structural Dynamics,2015,44(12):2057-2073.
[21]陈伟,王冠,杜彦良,等.高速铁路连续梁桥近断层地震易损性分析[J].哈尔滨工程大学学报,2020,41(2):212-218.
[22]王统宁,刘健新,于泳波.近断层地震动作用下减隔震桥梁空间动力分析[J].交通运输工程学报,2009,9(5):20-25,31.
[23] Baker J W,Cornell C A. Vector-valued intensity measures for pulse-like near-fault ground motions[J].Engineering Structures,2008,30(4):1048-1057.
[24]吕大刚,于晓辉,潘峰,等.基于改进云图法的结构概率地震需求分析[J].世界地震工程,2010,26(1):7-15.
基本信息:
DOI:10.13774/j.cnki.kjtb.2025.08.013
中图分类号:U442.55;U448.215
引用信息:
[1]徐天庭,宁晓骏,刘国坤.隔震连续梁桥时程动力分析中地震动强度指标评价[J].科技通报,2025,41(08):87-94+112.DOI:10.13774/j.cnki.kjtb.2025.08.013.
基金信息: